zae_engine.models.foundations package

Submodules

zae_engine.models.foundations.benchmark module

class zae_engine.models.foundations.benchmark.TimeSeriesBert(vocab_size: int, d_model: int, max_len: int, num_layers: int, num_heads: int, dim_feedforward: int, dropout: float = 0.1, dim_pool: int = None, sep_token_id: int = 102, **factory_kwargs)[source]

Bases: Module

Encoder-only Transformer model based on BertBase with integrated embedding and positional encoding.

Parameters:
  • vocab_size (int) – The size of the vocabulary.

  • d_model (int) – The dimension of the embedding space.

  • max_len (int) – The maximum sequence length.

  • num_layers (int) – The number of layers in the Transformer encoder.

  • num_heads (int) – The number of attention heads in the Transformer encoder.

  • dim_feedforward (int) – The dimension of the feedforward network in the Transformer encoder.

  • dropout (float, optional) – The dropout rate for regularization. Default is 0.1.

  • dim_pool (int, optional) – The hidden dimension for the pooler. If provided, a pooler is applied to the [CLS] token.

  • sep_token_id (int, optional) – The token ID for [SEP]. Default is 102.

forward(input_ids: Tensor, positions: Tensor = None, src_mask: Tensor = None, src_key_padding_mask: Tensor = None) Tensor[source]

Forward pass through the encoder-only Transformer model.

Parameters:
  • input_ids (torch.Tensor) – Tensor of input token IDs with shape (batch_size, seq_len).

  • positions (torch.Tensor, optional) – Tensor of positions (timestamps) with shape (batch_size, seq_len).

  • src_mask (torch.Tensor, optional) – Source mask for masking certain positions in the input. Shape: (seq_len, seq_len).

  • src_key_padding_mask (torch.Tensor, optional) – Mask for padding tokens in the input sequence. Shape: (batch_size, seq_len).

Returns:

Output from the encoder or pooled output if dim_pool is set.

Return type:

torch.Tensor

zae_engine.models.foundations.bert module

class zae_engine.models.foundations.bert.BertEmbedding(vocab_size, max_len, dim_embedding)[source]

Bases: Module

forward(*input_args)[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

zae_engine.models.foundations.bert.bert_base(pretrained=False) tuple[source]

zae_engine.models.foundations.resnet module

zae_engine.models.foundations.resnet.cbam_injection(model: CNNBase) CNNBase[source]

Inject CBAM modules into the given ResNet model.

Parameters:

model (cnn.CNNBase) – The ResNet model to inject CBAM modules into.

Returns:

The ResNet model with SE modules injected.

Return type:

cnn.CNNBase

zae_engine.models.foundations.resnet.cbamresnet101(pretrained=False) CNNBase[source]

Create a CBAM-ResNet-101 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for CBAM modules. Default is False.

Returns:

An instance of the CBAM-ResNet-101 model.

Return type:

cnn.CNNBase

References

zae_engine.models.foundations.resnet.cbamresnet152(pretrained=False) CNNBase[source]

Create a CBAM-ResNet-152 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for CBAM modules. Default is False.

Returns:

An instance of the CBAM-ResNet-152 model.

Return type:

cnn.CNNBase

References

zae_engine.models.foundations.resnet.cbamresnet18(pretrained=False) CNNBase[source]

Create a CBAM-ResNet-18 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for CBAM modules. Default is False.

Returns:

An instance of the CBAM-ResNet-18 model.

Return type:

cnn.CNNBase

References

zae_engine.models.foundations.resnet.cbamresnet34(pretrained=False) CNNBase[source]

Create a CBAM-ResNet-34 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for CBAM modules. Default is False.

Returns:

An instance of the CBAM-ResNet-34 model.

Return type:

cnn.CNNBase

References

zae_engine.models.foundations.resnet.cbamresnet50(pretrained=False) CNNBase[source]

Create a CBAM-ResNet-50 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for CBAM modules. Default is False.

Returns:

An instance of the CBAM-ResNet-50 model.

Return type:

cnn.CNNBase

References

zae_engine.models.foundations.resnet.resnet101(pretrained=False) CNNBase[source]

Create a ResNet-101 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the ResNet-50 model.

Return type:

cnn.CNNBase

References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

zae_engine.models.foundations.resnet.resnet152(pretrained=False) CNNBase[source]

Create a ResNet-152 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the ResNet-50 model.

Return type:

cnn.CNNBase

References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

zae_engine.models.foundations.resnet.resnet18(pretrained=False) CNNBase[source]

Create a ResNet-18 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the ResNet-18 model.

Return type:

cnn.CNNBase

References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

zae_engine.models.foundations.resnet.resnet34(pretrained=False) CNNBase[source]

Create a ResNet-34 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the ResNet-34 model.

Return type:

cnn.CNNBase

References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

zae_engine.models.foundations.resnet.resnet50(pretrained=False) CNNBase[source]

Create a ResNet-50 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the ResNet-50 model.

Return type:

cnn.CNNBase

References

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

zae_engine.models.foundations.resnet.resnet_deco(n)[source]

Decorator to wrap ResNet model creation functions with predefined configurations.

Parameters:

n (int) – The number of layers for the ResNet model.

Returns:

Wrapped function with ResNet configurations.

Return type:

function

zae_engine.models.foundations.resnet.se_injection(model: CNNBase) CNNBase[source]

Inject SE modules into the given ResNet model.

Parameters:

model (cnn.CNNBase) – The ResNet model to inject SE modules into.

Returns:

The ResNet model with SE modules injected.

Return type:

cnn.CNNBase

zae_engine.models.foundations.resnet.seresnet101(pretrained=False) CNNBase[source]

Create an SE-ResNet-101 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for SE modules. Default is False.

Returns:

An instance of the SE-ResNet-101 model.

Return type:

cnn.CNNBase

References

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

zae_engine.models.foundations.resnet.seresnet152(pretrained=False) CNNBase[source]

Create an SE-ResNet-152 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for SE modules. Default is False.

Returns:

An instance of the SE-ResNet-152 model.

Return type:

cnn.CNNBase

References

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

zae_engine.models.foundations.resnet.seresnet18(pretrained=False) CNNBase[source]

Create an SE-ResNet-18 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for SE modules. Default is False.

Returns:

An instance of the SE-ResNet-18 model.

Return type:

cnn.CNNBase

References

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

zae_engine.models.foundations.resnet.seresnet34(pretrained=False) CNNBase[source]

Create an SE-ResNet-34 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for SE modules. Default is False.

Returns:

An instance of the SE-ResNet-34 model.

Return type:

cnn.CNNBase

References

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

zae_engine.models.foundations.resnet.seresnet50(pretrained=False) CNNBase[source]

Create an SE-ResNet-50 model with the option to load pre-trained weights.

Parameters:

pretrained (bool, optional) – If True, prints a message indicating no pre-trained weights for SE modules. Default is False.

Returns:

An instance of the SE-ResNet-50 model.

Return type:

cnn.CNNBase

References

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

zae_engine.models.foundations.unet module

zae_engine.models.foundations.unet.unet_brain(pretrained: bool = False) AutoEncoder[source]

Create a U-Net model with the option to load pre-trained weights.

The U-Net model is a type of convolutional neural network developed for biomedical image segmentation.

References

Parameters:

pretrained (bool, optional) – If True, loads pre-trained weights from a specified checkpoint. Default is False.

Returns:

An instance of the AutoEncoder model with U-Net architecture.

Return type:

zae_engine.models.autoencoder.AutoEncoder

zae_engine.models.foundations.word_embedding module

class zae_engine.models.foundations.word_embedding.FastTextEmbedding[source]

Bases: Module

A PyTorch module that uses pre-trained FastText embeddings from gensim.

embedding

PyTorch embedding layer initialized with FastText pre-trained weights.

Type:

nn.Embedding

forward(x)[source]

Passes input tensor through the embedding layer.

forward(x)[source]

Passes the input tensor through the embedding layer.

Parameters:

x (torch.Tensor) – The input tensor containing indices of words.

Returns:

The output tensor with embeddings for the input indices.

Return type:

torch.Tensor

class zae_engine.models.foundations.word_embedding.Word2VecEmbedding[source]

Bases: Module

A PyTorch module that uses pre-trained Word2Vec embeddings from gensim.

embedding

PyTorch embedding layer initialized with Word2Vec pre-trained weights.

Type:

nn.Embedding

forward(x)[source]

Passes input tensor through the embedding layer.

forward(x)[source]

Passes the input tensor through the embedding layer.

Parameters:

x (torch.Tensor) – The input tensor containing indices of words.

Returns:

The output tensor with embeddings for the input indices.

Return type:

torch.Tensor

Module contents